Problem Statement
Given an integer array nums
and a non-negative integer k, rotate the array to the left by k steps.
LeetCode:
Examples
Example 1:
Input: nums = [1, 2, 3, 4, 5, 6], k = 2
Output: nums = [3, 4, 5, 6, 1, 2]
Explanation: rotate 1 step to the left: [2, 3, 4, 5, 6, 1]
rotate 2 steps to the left: [3, 4, 5, 6, 1, 2]
Example 2:
Input: nums = [3, 4, 1, 5, 3, -5], k = 8
Output: nums = [1, 5, 3, -5, 3, 4]
Explanation: rotate 1 step to the left: [4, 1, 5, 3, -5, 3]
rotate 2 steps to the left: [1, 5, 3, -5, 3, 4]
rotate 3 steps to the left: [5, 3, -5, 3, 4, 1]
rotate 4 steps to the left: [3, -5, 3, 4, 1, 5]
rotate 5 steps to the left: [-5, 3, 4, 1, 5, 3]
rotate 6 steps to the left: [3, 4, 1, 5, 3, -5]
rotate 7 steps to the left: [4, 1, 5, 3, -5, 3]
rotate 8 steps to the left: [1, 5, 3, -5, 3, 4]
Different Approaches
1️⃣ Naive (Brute Force) Approach
Intuition:
We can rotate the array one element at a time. For each left rotation, shift each element of the array one position to the left, and move the first element to the end of the array.
Algorithm:
- For each rotation (run this
k
times):- Save the first element in a temporary variable.
- Shift every element in the array one position to the left.
- Place the saved element at the last position.
Visualization:
arr : {1, 2, 3, 4, 5}, k = 2
First Iteration:
i = 0, k = 2
i < k
0 < 2
true
arr = {2, 3, 4, 5, 1}
i++
Second Iteration:
i = 1, k = 2
i < k
1 < 2
true
arr = {3, 4, 5, 1, 2}
i++
Loop Termination:
i = 2, k = 2
i < k
2 < 2
false
arr = {3, 4, 5, 1, 2}
return arr
Code:
#include <iostream>
void leftRotateByOne(int arr[], int n) {
int temp = arr[0]; // Store the first element
for (int i = 0; i < n - 1; i++) {
arr[i] = arr[i + 1]; // Shift elements to the left
}
arr[n - 1] = temp; // Move the first element to the last position
}
void leftRotate(int arr[], int n, int k) {
for (int i = 0; i < k; i++) {
leftRotateByOne(arr, n); // Rotate the array by one k times
}
}
int main() {
int arr[] = {1, 2, 3, 4, 5};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
leftRotate(arr, n, k);
std::cout << "Rotated array: ";
for (int i = 0; i < n; i++) {
std::cout << arr[i] << " ";
}
return 0;
}
Complexity Analysis:
- Time Complexity:
O(n * k)
- We perform
k
rotations, and each rotation shiftsn
elements. Therefore, the time complexity isO(n * k)
.
- We perform
- Space Complexity:
O(1)
- Only a temporary variable is used to store the first element.
2️⃣ Using Auxiliary Array
Intuition:
To reduce the number of shifts, we can create a new array where the rotated elements are placed in their correct positions. This way, we avoid shifting elements multiple times.
Algorithm:
- Create a temporary array of the same size.
- Copy the elements starting from index
k
to the temporary array. - Copy the first
k
elements of the original array to the end of the temporary array. - Copy the temporary array back to the original array.
Visualization:
arr : {1, 2, 3, 4, 5}, k = 2
Temp Array:
Create a temp array of size n
temp = {0, 0, 0, 0, 0}
Copy elements from index k = 2 to end
Copy elements starting from index, k = 2 into temp array
arr = {1, 2, 3, 4, 5}, k = 2
temp = {3, 4, 5, 0, 0}
Copy the first k elements:
arr = {1, 2, 3, 4, 5}, k = 2
temp = {3, 4, 5, 1, 2}
Copy the temporary array back to the original array:
arr = {3, 4, 5, 1, 2}, k = 2
temp = {3, 4, 5, 1, 2}
Code:
#include <iostream>
void leftRotate(int arr[], int n, int k) {
int temp[n]; // Temporary array
// Copy elements starting from index k
for (int i = 0; i < n - k; i++) {
temp[i] = arr[i + k];
}
// Copy the first k elements to the end
for (int i = 0; i < k; i++) {
temp[n - k + i] = arr[i];
}
// Copy the temp array back to the original array
for (int i = 0; i < n; i++) {
arr[i] = temp[i];
}
}
int main() {
int arr[] = {1, 2, 3, 4, 5};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
leftRotate(arr, n, k);
std::cout << "Rotated array: ";
for (int i = 0; i < n; i++) {
std::cout << arr[i] << " ";
}
return 0;
}
Complexity Analysis:
- Time Complexity:
O(n)
- We copy
n
elements twice (once to the temp array and once back to the original array).
- We copy
- Space Complexity:
O(n)
- We use an extra array of size
n
to store the elements.
- We use an extra array of size
3️⃣ Optimal Approach (Reversal Algorithm)
Intuition:
The optimal solution is based on the reversal technique, which uses in-place rotations by reversing parts of the array. The idea is:
- Reverse the first
k
elements. - Reverse the remaining
n - k
elements. - Reverse the entire array.
Algorithm:
- Reverse the first
k
elements. - Reverse the last
n - k
elements. - Reverse the entire array.
Visualization:
arr = {1, 2, 3, 4, 5}, k = 2
Reverse the first k
elements:
arr = {2, 1, 3, 4, 5}
Reverse the remaining n - k
elements:
arr = {2, 1, 5, 4, 3}
Reverse the entire array:
arr = {3, 4, 5, 1, 2}
Code:
#include <iostream>
#include <algorithm> // For std::reverse
// Function to reverse a section of the array
void reverse(int arr[], int start, int end) {
while (start < end) {
std::swap(arr[start], arr[end]);
start++;
end--;
}
}
// Function to left rotate the array by k places using the reversal technique
void leftRotate(int arr[], int n, int k) {
k = k % n; // Handle if k is greater than the size of the array
// Step 1: Reverse the first k elements
reverse(arr, 0, k - 1);
// Step 2: Reverse the remaining n-k elements
reverse(arr, k, n - 1);
// Step 3: Reverse the entire array
reverse(arr, 0, n - 1);
}
int main() {
int arr[] = {1, 2, 3, 4, 5};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
leftRotate(arr, n, k);
std::cout << "Rotated array: ";
for (int i = 0; i < n; i++) {
std::cout << arr[i] << " ";
}
return 0;
}
Complexity Analysis:
- Time Complexity: O(n)
- We perform three reversals, each taking O(n) time.
- Space Complexity: O(1)
- The array is rotated in place, so no extra space is needed.